Analysis of Ecological Momentary Assessment Data Using Multilevel Modeling

Michael Russell The Methodology Center For C-StARR Writing Group, Duke & UNC November 17, 2016

Repeated Assessments Give Us Multiple Levels of Information

Example: Craving Among Smokers

- Craving as a primary driver of smoking behavior among smokers
- Craving may differ *within people* over time
 - *dynamic*, can be "triggered" by momentary factors: e.g., time of day, negative affect
- Craving may also differ between people, on average
 - Some people crave nicotine more than others
 - Driven by person-level characteristics, e.g. dependence level

Example Study Design

- 1000 Smokers, no plans to quit
- Assessed 5 times daily
 - Evenly spaced from Morning to Evening
 - *Measures focus on craving, affect (positive and negative)*
- Baseline Measures obtained before EMA
 - Dependence level, childhood adversity

How much have you been bothered by the desire to smoke a cigarette <u>since the</u> <u>last survey</u>?

Craving varies both <u>between smokers</u>, and <u>within smokers</u> <i>over time

State

Roadmap

- 1. Intro to MLM and Partitioning Between versus Within Variance in Craving
- 2. Craving by Time of Day
- 3. Craving Time Course by Baseline Dependence
- 4. Modeling Within-Person Processes: Negative Affect and Craving
- 5. Within-Person Process by Between-Person Characteristics

Intro to Multilevel Modeling

Multilevel Models for EMA Data

- Multilevel models (MLM) are frequently used in EMA analyses
- Features:
 - Allow prediction of outcome (craving) at multiple levels
 - Adjust for non-independence of observations due to repeated measurement of outcome over time

Multilevel models also known as...

- Mixed models
- Random effects models
- General linear mixed models
- Hierarchical linear models (HLM)
- Growth curve models (special case of MLM)

What are they, in a nutshell?

- The term "mixed" in mixed models (and SAS PROC MIXED) refers to a generalization of standard linear regression
 - Allows for a "mix" of both <u>fixed</u> and <u>random</u> effects
- *Fixed Effects* refer to the regression coefficients (intercepts and slopes)
- *Random Effects* refer to variance around these coefficients (intercept variance, slope variance, residual variance)

Why use MLM? EMA data are "nested"

- If you collect repeated measurements on a set of individuals, time is *nested* within individual
- Nesting causes dependence: Two assessments from same individual more similar than two assessments from different individuals
- Multilevel models account for this:
 - Repeated assessments at Level 1 (within-person)
 - Individuals at Level 2 (between-person)

What are the levels?

- Level 1 is the **Assessment-Level Model**
 - We assume Y_{ij} (outcome for time i, person j) is a function of assessment-specific characteristics plus random error
 - *"WHEN" questions*
 - *Is craving higher <u>when</u> negative affect is high?*

• Level 2 is the **Individual-Level Model**

- Parameters in Level 1 (effects of assessment-specific characteristics on outcome) vary across individuals; parameters modeled as function of individual characteristics
- *"WHO" questions*
- *Is average craving higher for smokers <u>who</u> show higher dependence?*

Partitioning Between versus Within Variance in Craving

Partitioning Variance with MLM

- Let's start with a simple MLM
- We are interested in *how much* of the variation in craving is *between* versus *within*
- We specify an "empty" MLM a model with no predictors to figure this out

Empty MLM for Craving

LEVEL 1: CRAV_{*ij*} = $\beta_{0j} + e_{ij}$ **LEVEL 2:** $\beta_{0j} = \gamma_{00} + u_{0j}$

<u>Level 1 is the Assessment level</u>, modeling moment-to-moment relationships within a person (why craving differs from moment to moment within the same person)

Level 2 is the Person level, modeling relationships between people (why average craving levels differ between people)

Mixed Equation...What Proc Mixed Uses

Multilevel Equation: LEVEL 1: CRAV_{*ij*} = $\beta_{0j} + e_{ij}$ **LEVEL 2:** $\beta_{0j} = \gamma_{00} + u_{0j}$

Mixed Equation: $\mathbf{CRAV}_{ij} = \gamma_{00} + u_{0j} + e_{ij}$

In the mixed equation, we substitute β_{0j} for the pieces that make it up:

- γ_{00} , the fixed intercept
- $u_{0j'}$ the random intercept

PROC MIXED for Empty Model

```
title "Craving Empty Model";
proc mixed data=ILDDataset method=ml covtest;
class id;
model craving = /solution cl ddfm=bw;
random intercept /subject=id type=un g;
repeated /sub=id type=vc;
run; title;
```

Model: specifies fixed effects (intercepts and slopes) *Random:* specifies random effects (variances of intercepts and slopes) *Repeated:* specifies within-person residual variance

PROC MIXED for Empty Model

```
TITLE "Craving Empty Model";

PROC MIXED data=ILDDataset METHOD=ml COVTEST;

CLASS id;

MODEL craving = /SOLUTION CL DDFM=bw;

RANDOM intercept /SUBJECT=id TYPE=un G;

REPEATED /SUB=id TYPE=vc;

RUN; TITLE;
```

What are we estimating? **CRAV**_{*ii*} = γ_{00} + U_{0i} + e_{ii}

Model: Intercept fixed effect for craving (γ_{00}) *Random:* Craving intercept variance (Variance of u_{0j}) *Repeated:* Level 1 residual variance (Variance of e_{ij})

Selected Model Output

Random Effects

- Between-person variance in craving
- Within-person variance in craving

		Covariance Parameter Estimates								
	Cov Parm	Subject	Estimate	Standard Error	Z Value	Pr > Z				
~>>	Intercept	id	6.5218	0.2975	21.92	<.0001				
\rightarrow	Residual	id	3.9396	0.03248	121.31	<.0001				

Interpretations

What is the mean of craving across all people and observations?

	Solution for Fixed Effects									
	Effect Estimate Standard DF t Value Pr > t Alpha Lower Upper							Upper		
\rightarrow	Intercept	5.0076	0.08157	999	61.39	<.0001	0.05	4.8476	5.1677	

Do some people have higher mean	Covariance Parameter Estimates					
craving levels than others?	Cov Parm	Subject	Estimate	Standard Error	Z Value	Pr > Z
	Intercept	id	6.5218	0.2975	21.92	<.0001
Does craving vary from moment to	Residual	id	3.9396	0.03248	121.31	<.0001
moment within a person?						

Partitioning Variance via the Intraclass Correlation (ICC)

- The ICC is the proportion of variance in the outcome that is between (vs within) people
- Can be thought of as a "clustering coefficient", average correlation between repeated observations
- The ICC is

The Amount of Between-Person Variance *divided by* The Total Variance (between + within)

ICC = var(Intercept) / (var(Intercept) + var(Residual)) = 6.52 / (6.52 + 3.94) = 0.62

62% of the variance in craving is <u>between people</u>

1-ICC gives the variance <u>within people</u> (1-0.62 = 0.38)

The remaining 38% of the variance in craving is within people over time.

Craving by Time of Day

Modeling the Time Trends in Craving

- Over a third of the variance in craving is at the within-person level
- What might cause within-person fluctuation in craving?
- We suspect craving in smokers may vary by time
 - Time of day (morning, afternoon, evening)

Estimating the relationship

- We are interested in modeling how craving varies from the start to the end of a day
- We create a variable that counts the hours since the start of the day, from 8 AM to 8 PM
- We estimate the relationship using MLM

MLM for Craving by Time-of-Day

LEVEL 1: CRAV_{*ij*} = $\beta_{0j} + \beta_{1j}$ (**TOD** c_{ij}) + e_{ij}

LEVEL 2: $\beta_{0j} = \gamma_{00} + u_{0j}$ $\beta_{1j} = \gamma_{10}$

Time of day (TOD) is centered ("c") at 8 AM.

 β_{1j} is the linear slope describing the relationship between craving and time of day

 β_{0j} is the intercept, the predicted level of craving at 8 AM

Mixed Model for Craving by Timeof-Day

 $\begin{aligned} \mathbf{CRAV}_{ij} &= \gamma_{00} + \gamma_{10} (\mathbf{TODc}_{ij}) & \qquad Fixed \ effects \\ &+ u_{0j} + e_{ij} & \qquad Random \ effects \end{aligned}$

- γ_{00} : fixed intercept
- γ_{10} : fixed time-of-day slope
- ▶ u_{0i}: random intercept
- *e_{ij}* : residual

SAS Proc Mixed Syntax

title "Time-of-Day Association with Craving";
proc mixed data=ILDDataset method=ml covtest;
class id;
model Craving= hourscontc / solution ddfm=bw;
random intercept / subject=id type=un g gcorr;
repeated / sub=id type=vc;
run; title;

Selected Output

Fixed Effects

Solution for Fixed Effects									
Effect Estimate Standard DF t Value Pr >									
Intercept	5.6810	0.08455	999	67.19	<.0001				
hourscontc	-0.1012	29E3	-30.38	<.0001					

Random Effects

Covariance Parameter Estimates								
Cov Parm Subject Estimate Standard Z Value Pr >								
UN(1,1)	id	6.5312	0.2978	21.93	<.0001			
Residual	id	3.8197	0.03149	121.31	<.0001			

Autocorrelation in Residuals?

 Models so far make the assumption that residuals are independent (correlation = 0) within an individual

	t_1	t_2	t_3	t_4
t_1	1	0	0	0
t_2	0	1	0	0
t_3	0	0	1	0
t_4	0	0	0	1

- May not be reasonable.
 - Measures taken closer in time are likely to be more similar to those farther apart

Autoregressive Lag 1

- An autoregressive lag 1 [AR(1)] structure is often used in daily diaries
- Assumes decomposing correlation structure *by observation number*, and assumes equal spacing of observations over time

	t_1	t_2	t_3	t_4
t_1	1	ρ	ρ^2	$ ho^3$
t_2	ρ	1	ρ	$ ho^2$
t_3	ρ^2	ρ	1	ρ
t_4	ρ ³	ρ^2	ρ	1

Spatial Power [SP(POW)]

- Equal spacing of observations is often not a good assumption for EMA designs
- The Spatial Power structure is an adapted version of AR(1)
 - Assumes decomposing correlation, but weights lagged correlations by the *time distance* between observations (*d*_{ii})

	t_1	t_2	t_3	t_4
t_1	1	$\rho^{d_{12}}$	$\rho^{d_{13}}$	$\rho^{d_{14}}$
t_2	$\rho^{d_{21}}$	1	$\rho^{d_{23}}$	$\rho^{d_{24}}$
t_3	$\rho^{d_{31}}$	$\rho^{d_{32}}$	1	$ ho^{d_{34}}$
t_4	$ ho^{d_{41}}$	$\rho^{d_{42}}$	$\rho^{d_{43}}$	1

Adjusting our Model for SP(POW) error autocorrelation

title "Time-of-Day Association with Craving, SP(POW) Residual Autocorrelation"; proc mixed data=ILDDataset method=ml covtest; class id; model Craving= hourscontc / solution ddfm=bw; random intercept / subject=id type=un g gcorr; repeated / sub=id type=sp(pow)(studymins); run; title;

Significant autocorrelation, little difference in parameters

Fixed Effects, without SP(POW)

Solution for Fixed Effects									
Effect Estimate Standard DF t Value Pr >									
Intercept	5.6810	0.08455	999	67.19	<.0001				
hourscontc	-0.1012	0.003329	29E3	-30.38	<.0001				

Random Effects, without SP(POW)

Covariance Parameter Estimates									
Cov Parm Subject Estimate Standard Z Value P									
UN(1,1)	id	6.5312	0.2978	21.93	<.0001				
Residual	id	3.8197	0.03149	121.31	<.0001				

Fixed Effects, with SP(POW)

Solution for Fixed Effects								
Effect Estimate Standard DF t Value Pr >								
Intercept	5.6981	5.6981 0.08454		67.40	<.0001			
hourscontc	scontc -0.1017 0.003403 29E3 -29.89 <.00							

Random Effects, with SP(POW)

Covariance Parameter Estimates									
Cov Parm	Subject Estimate Standard Error Z Value Pr Z								
UN(1,1)	id	6.4970	0.2967	21.90	<.0001				
SP(POW)	id	0.9731	0.001385	702.59	<.0001				
Residual		3.8465	0.03217	119.58	<.0001				

Random Effect?

- We find that craving appears to decrease throughout the day
 - But does it work the same way for everyone?
- Perhaps we think that the link between time of day and craving differs randomly from person to person
- Build in a random slope for time of day

~

MLM for Craving by Time of Day, with Random Slope

LEVEL 1: CRAV_{*ij*} = $\beta_{0j} + \beta_{1j}$ (**TODc**_{*ij*}) + e_{ij} **LEVEL 2:** $\beta_{0j} = \gamma_{00} + u_{0j}$ $\beta_{1j} = \gamma_{10} + u_{1j}$

Mixed Model for Craving by Time of Day, with Random Slope

 $\begin{aligned} \mathbf{CRAV}_{ij} &= \gamma_{00} + \gamma_{10} (\mathbf{TODc}_{ij}) \\ &+ u_{0j} + u_{1j} (\mathbf{TODc}_{ij}) + e_{ij} \end{aligned}$

- γ_{00} : fixed intercept
- γ_{10} : fixed time-of-day slope
- u_{0i} : random intercept
- u_{1i} : random time-of-day slope
- e_{ij} : residual

SAS Proc Mixed Syntax

title "Time-of-Day Association with Craving, random slope";
proc mixed data=ILDDataset method=ml covtest;
class id;
model Craving= hourscontc / solution ddfm=bw;
random intercept hourscontc / subject=id type=un g gcorr;
repeated / sub=id type=sp(pow)(studymins);
run; title;

Selected Output

Fixed Effects

Solution for Fixed Effects								
Effect	t Value	Pr > t						
Intercept	5.6974	0.08559	999	66.57	<.0001			
hourscontc	-0.1017	0.003519	29E3	-28.90	<.0001			

Random Effects

Estimated G Matrix							
Row	Effect	id	Col1	Col2			
1	Intercept	1	6.6766	-0.01617			
2	hourscontc	1	-0.01617	0.000826			

Covariance Parameter Estimates								
Cov Parm	Subject	Estimate	Standard Error	Z Value	Pr Z			
UN(1,1)	id	6.6766	0.3279	20.36	<.0001			
UN(2,1)	id	-0.01617	0.009983	-1.62	0.1052			
UN(2,2)	id	0.000826	0.000556	1.49	0.0686			
SP(POW)	id	0.9728	0.001421	684.52	<.0001			
Residual		3.8363	0.03271	117.29	<.0001			

Extending the Model to a Quadratic

 $\begin{aligned} \mathbf{CRAV}_{ij} &= \gamma_{00} + \gamma_{10}(\mathbf{TODc}_{ij}) + \gamma_{20}(\mathbf{TODc}_{ij}^{2}) \\ &+ u_{0j} + u_{1j}(\mathbf{TODc}_{ij}) + u_{2j}(\mathbf{TODc}_{ij}^{2}) + e_{ij} \end{aligned}$

 γ_{00} : fixed intercept γ_{10} : fixed time-of-day linear slope γ_{20} : fixed time-of-day quadratic u_{0j} : random intercept u_{1j} : random time-of-day linear slope u_{2j} : random time-of-day quadratic e_{ij} : residual

Extending the Model to a Quadratic

title "Time-of-Day Association with Craving, Random Slope & Quadratic";
proc mixed data=ILDDataset method=ml covtest;
class id;
model Craving= hourscontc hourscontcsq /s ddfm=bw;
random intercept hourscontc hourscontcsq /sub=id type=un g gcorr;
repeated /sub=id type=sp(pow)(studymins);
run; title;

Output, Quadratic Model

Fixed Effects

Solution for Fixed Effects								
Effect	Estimate	Standard Error	DF	t Value	Pr > t			
Intercept	7.7809	0.07841	999	99.24	<.0001			
hourscontc	-0.9508	0.01764	29E3	-53.91	<.0001			
hourscontcsq	0.06382	0.001292	29E3	49.39	<.0001			

Random Effects

	Estimated G Matrix								
Row	Effect id Col1 Col2 Co								
1	Intercept	1	4.4211	0.3250	-0.02671				
2	hourscontc	1	0.3250	0.1084	-0.00786				
3	hourscontcsq	1	-0.02671	-0.00786	0.000583				

Covariance Parameter Estimates								
Cov Parm	Subject	Estimate	Standard Error	Z Value	Pr Z			
UN(1,1)	id	4.4211	0.2726	16.22	<.0001			
UN(2,1)	id	0.3250	0.04359	7.46	<.0001			
UN(2,2)	id	0.1084	0.01413	7.67	<.0001			
UN(3,1)	id	-0.02671	0.003181	-8.40	<.0001			
UN(3,2)	id	-0.00786	0.001027	-7.66	<.0001			
UN(3,3)	id	0.000583	0.000076	7.66	<.0001			
SP(POW)	id	0.9414	0.01296	72.63	<.0001			
Residual		3.3069	0.02839	116.49	<.0001			

PennState

Conclusions from Time-Of-Day Model

- Craving starts high in the morning, reaches a low in the early afternoon, slight increase in the evening
- Random effects show significant heterogeneity in the daily time course of craving

Craving Time Course by Baseline Dependence

Between-Person Effects

- Smokers vary in their level of nicotine dependence
- These differences in dependence may influence their average levels of craving
- As well as their craving dynamics

Does average craving differ by Baseline Dependence?

- We hypothesize that smokers higher in dependence will experience more intense craving on average.
- Dependence
 - Measured via the item "*How soon after you wake up do you smoke your first cigarette?*"
 - Within 5 minutes, 5-30 mins, 31-60 mins, Over 60 mins
 - Dichotomized into high (within 5 minutes, 9%) versus low-tomoderate dependence (6-60+ mins, 91%)

MLM for Dependence Effect

LEVEL 1: CRAV_{*ij*} = β_{0j} + e_{ij}

LEVEL 2: $\beta_{0j} = \gamma_{00} + \gamma_{01}(\text{DEP}_j) + u_{0j}$

 γ_{00} is the intercept, the predicted level of craving when Dependence = 0 (low-to-moderate dependence)

 γ_{01} is the Dependence association, or the increase in craving when Dependence = 1 (high dependence)

Mixed Model for Dependence Effect **Multilevel Equation: LEVEL 1:** $CRAV_{ij} = \beta_{0j} + e_{ij}$

LEVEL 2:
$$\beta_{0j} = \gamma_{00} + \gamma_{01}(\text{DEP}_j) + u_{0j}$$

Mixed Equation: $\mathbf{CRAV}_{ij} = \gamma_{00} + \gamma_{01}(\text{DEP}_j) + u_{0j} + e_{ij}$

 γ_{00} : fixed intercept γ_{01} : Dependence effect on intercept u_{0j} : random intercept e_{ij} : residual

SAS Syntax for Between Model

title "Dependence association with craving";
proc mixed data=ILDDataset method=ml covtest;
class id;
model Craving= ftnd0 /s ddfm=bw;
random intercept /subject=id type=un g gcorr;
repeated /sub=id type=sp(pow)(studymins);
run; title;

Selected Model Results

Fixed Effects:

Those with high dependence show higher mean craving than those with lower dependence

Solution for Fixed Effects								
Effect	Estimate	Standard Error	DF	t Value	Pr > t			
Intercept	4.5990	0.07476	998	61.52	<.0001			
ftnd0	4.1984	0.2353	998	17.84	<.0001			

Random Effects

Covariance Parameter Estimates								
Cov Parm	Subject	Subject Estimate Standard		Z Value	Pr Z			
UN(1,1)	id	4.8820	0.2247	21.73	<.0001			
SP(POW)	id	0.9748	0.001176	829.14	<.0001			
Residual		3.9711	0.03327	119.36	<.0001			

Dependence as a Predictor of Craving Dynamics

- We might also hypothesize that dependence level changes the dynamics of craving
- Perhaps craving for those with high dependence is less dependent on time of day compared to those with low-to-moderate dependence
- Add dependence to our time-of-day MLM

MLM for Time-of-Day by Dependence

LEVEL 1: $CRAV_{ij} = \beta_{0j} + \beta_{1j}(TODc_{ij}) + \beta_{2j}(TODc_{ij}^{2}) + e_{ij}$ LEVEL 2: $\beta_{0j} = \gamma_{00} + \gamma_{01}(DEP_{j}) + u_{0j}$ $\beta_{1j} = \gamma_{10} + \gamma_{11}(DEP_{j}) + u_{1j}$ $\beta_{2j} = \gamma_{20} + \gamma_{21}(DEP_{j}) + u_{2j}$

Mixed Model for Time-of-Day by Dependence

 $\begin{aligned} \mathbf{CRAV}_{ij} &= \gamma_{00} + \gamma_{01}(\mathbf{DEP}_j) \\ &+ \gamma_{10}(\mathbf{TODc}_{ij}) + \gamma_{11}(\mathbf{DEP}_j \times \mathbf{TODc}_{ij}) \\ &+ \gamma_{20}(\mathbf{TODc}_{ij}^2) + \gamma_{21}(\mathbf{DEP}_j \times \mathbf{TODc}_{ij}^2) \\ &+ u_{0j} + u_{1j}(\mathbf{TODc}_{ij}) + u_{2j}(\mathbf{TODc}_{ij}^2) + e_{ij} \end{aligned}$

 $\gamma_{11}(\mathbf{DEP}_j \times \mathbf{TODc}_{ij})$ and $\gamma_{21}(\mathbf{DEP}_j \times \mathbf{TODc}_{ij}^2)$ are <u>cross-level interactions</u>, where a level 2 moderator (between-person) is interacted with a level 1 predictor (within person)

Output

Solution for Fixed Effects								
Effect	Estimate	Standard Error	DF	t Value	Pr > t			
Intercept	7.5255	0.07875	998	95.56	<.0001			
hourscontc	-1.0176	0.01735	29E3	-58.65	<.0001			
hourscontcsq	0.06876	0.001270	29E3	54.15	<.0001			
ftnd0	2.5333	0.2478	998	10.22	<.0001			
hourscontc*ftnd0	0.6616	0.05465	29E3	12.11	<.0001			
hourscontcsq*ftnd0	-0.04891	0.004003	29E3	-12.22	<.0001			

Estimated G Matrix								
Row	Effect	id	Col1	Col2	Col3			
1	Intercept	1	3.8529	0.1715	-0.01539			
2	hourscontc	1	0.1715	0.06841	-0.00491			
3	hourscontcsq	1	-0.01539	-0.00491	0.000365			

Covariance Parameter Estimates								
Cov Parm	Subject	Estimate	Standard Error	Z Value	Pr Z			
UN(1,1)	id	3.8529	0.2475	15.57	<.0001			
UN(2,1)	id	0.1715	0.03985	4.30	<.0001			
UN(2,2)	id	0.06841	0.01224	5.59	<.0001			
UN(3,1)	id	-0.01539	0.002876	-5.35	<.0001			
UN(3,2)	id	-0.00491	0.000887	-5.54	<.0001			
UN(3,3)	id	0.000365	0.000066	5.55	<.0001			
SP(POW)	id	0.9411	0.01320	71.31	<.0001			
Residual		3.3065	0.02838	116.52	<.0001			

Creating trajectories by group

- All parts of the curve differ by dependence group (intercept, slope, quadratic)
- We can generate a curve for each group, and discover intercept, slope, and quadratic values at low and high dependence

Use Fixed Effects Equation to Generate Predicted Values

 $\begin{aligned} \mathbf{Pred_CRAV}_{ij} &= \gamma_{00} + \gamma_{01}(\mathbf{DEP}_j) \\ &+ \gamma_{10}(\mathbf{TODc}_{ij}) + \gamma_{11}(\mathbf{DEP}_j \times \mathbf{TODc}_{ij}) \\ &+ \gamma_{20}(\mathbf{TODc}_{ij}^2) + \gamma_{21}(\mathbf{DEP}_j \times \mathbf{TODc}_{ij}^2) \end{aligned}$

Low-to-Mod Dependence (DEP=0), 9 AM (TODc=1)

 $Pred_CRAV_{ij} = 7.53 + 2.53(0) + (-1.02^{*}(1)) + 0.66^{*}(0 \times 1) + 0.07^{*}(1) + (-0.05^{*}(0 \times 1))$

 $\mathbf{CRAV}_{ij} = (7.53) + (-1.02 * (1)) + (0.07 * (1))$

 $CRAV_{ij} = 6.58$

High Dependence (DEP=1), 9 AM (TODc=1)

 $Pred_CRAV_{ij} = 7.53 + 2.53(1) + (-1.02^{*}(1)) + 0.66^{*}(1 \times 1) + 0.07^{*}(1) + (-0.05^{*}(1 \times 1))$

$$\mathbf{CRAV}_{ij} = (10.06) + (-0.36) + (0.02)$$

$$\mathbf{CRAV}_{ij} = 9.72$$

Getting estimates from the model via ESTIMATE statements

- Estimate statements allow us to generate point estimates for graphing
- And group-specific intercepts, slopes, and quadratics

Programming ESTIMATE statements

```
title "Craving by time of day Quadratic x FTND, points for graphing";
proc mixed data=ILDDataset method=ml covtest;
class id;
model Craving= ftnd0
                  hourscontc ftnd0*hourscontc
             hourscontcsq ftnd0*hourscontcsq /s ddfm=bw;
random intercept hourscontc hourscontcsq / subject=id type=un g gcorr;
repeated / sub=id type=sp(pow)(studymins);
estimate "9 AM, Low Dep" intercept 1 hourscontc 1 hourscontcsq 1
                 ftnd0 0 ftnd0*hourscontc 0
        ftnd0*hourscontcsq 0 / cl;
estimate "9 AM, High Dep" intercept 1 hourscontc 1 hourscontcsq 1
                 ftnd01 ftnd0*hourscontc1
        ftnd0*hourscontcsq 1 /cl;
```

ETC....;

$\begin{aligned} \mathbf{Pred_CRAV}_{ij} &= \gamma_{00} + \gamma_{01}(\mathbf{DEP}_j) \\ &+ \gamma_{10}(\mathbf{TODc}_{ij}) + \gamma_{11}(\mathbf{DEP}_j \times \mathbf{TODc}_{ij}) \\ &+ \gamma_{20}(\mathbf{TODc}_{ij}^2) + \gamma_{21}(\mathbf{DEP}_j \times \mathbf{TODc}_{ij}^2) \end{aligned}$

estimate "9 AM, Low Dep" intercept 1 ftnd0 0 hourscontc 1 ftnd0*hourscontc 0 hourscontcsq 1 ftnd0*hourscontcsq 0 / cl;

$$\begin{aligned} \mathbf{Pred_CRAV}_{ij} &= \gamma_{00} + \gamma_{01}(\mathbf{0}) \\ &+ \gamma_{10}(\mathbf{1}) + \gamma_{11}(0 \ge \mathbf{1}) \\ &+ \gamma_{20}(\mathbf{1}) + \gamma_{21}(\mathbf{0} \ge \mathbf{1}) \end{aligned}$$

$\begin{aligned} \mathbf{Pred_CRAV}_{ij} &= \gamma_{00} + \gamma_{01}(\mathbf{DEP}_j) \\ &+ \gamma_{10}(\mathbf{TODc}_{ij}) + \gamma_{11}(\mathbf{DEP}_j \times \mathbf{TODc}_{ij}) \\ &+ \gamma_{20}(\mathbf{TODc}_{ij}^2) + \gamma_{21}(\mathbf{DEP}_j \times \mathbf{TODc}_{ij}^2) \end{aligned}$

estimate "9 AM, High Dep" intercept 1 ftnd0 1 hourscontc 1 ftnd0*hourscontc 1 hourscontcsq 1 ftnd0*hourscontcsq 1 / cl;

$$\begin{aligned} \mathbf{Pred_CRAV}_{ij} &= \gamma_{00} + \gamma_{01}(\mathbf{1}) \\ &+ \gamma_{10}(\mathbf{1}) + \gamma_{11}(1 \times \mathbf{1}) \\ &+ \gamma_{20}(\mathbf{1}) + \gamma_{21}(\mathbf{1} \times \mathbf{1}) \end{aligned}$$

Simple Effects

- We can also use the equation to estimate simple effects
 - (intercepts, slopes, quadratics by dependence group)

 $\begin{aligned} \mathbf{Pred_CRAV}_{ij} &= \gamma_{00} + \gamma_{01}(\mathbf{DEP}_j) \\ &+ \gamma_{10}(\mathbf{TODc}_{ij}) + \gamma_{11}(\mathbf{DEP}_j \times \mathbf{TODc}_{ij}) \\ &+ \gamma_{20}(\mathbf{TODc}_{ij}^2) + \gamma_{21}(\mathbf{DEP}_j \times \mathbf{TODc}_{ij}^2) \end{aligned}$

Factoring out TODc and TODc², we get:

Simple Intercept: $\gamma_{00} + \gamma_{01}(\mathbf{DEP}_j)$

Simple Slope: $\gamma_{10} + \gamma_{11}(\mathbf{DEP}_j)$

Simple Quadratic: $\gamma_{20} + \gamma_{21}(\mathbf{DEP}_j)$

Programming Estimate Statements for Simple Effects

Simple Intercept: $\gamma_{00} + \gamma_{01}(DEP_j)$ Simple Slope: $\gamma_{10} + \gamma_{11}(DEP_j)$ Simple Quadratic: $\gamma_{20} + \gamma_{21}(DEP_j)$

*simple equations, Low Dep; estimate "intercept for Low Dep" intercept 1 ftnd0 0; estimate "slope for Low Dep" hourscontc 1 ftnd0*hourscontc 0; estimate "quadratic for Low Dep" hourscontcsq 1 ftnd0*hourscontcsq 0; *simple equations, High Dep; estimate "intercept for High Dep" intercept 1 ftnd0 1; estimate "slope for High Dep" hourscontc 1 ftnd0*hourscontc 1; estimate "quadratic High Low Dep" hourscontcsq 1 ftnd0*hourscontcsq 1;

Modeling Within-Person Processes: Negative Affect and Craving

Modeling Within-Person Process

- So far we've seen how craving changes with time itself
- But we could also see how craving varies in relation to *other dynamic, time-varying factors*
- For example, we might suspect that nicotine craving increases with increased negative affect (NA; sadness, anger, anxiety)

NA and Craving

- NA varies both between people (some have higher average NA than others) and within people (NA varies from moment to moment)
- Thus, NA and craving could be related at *both* levels of analysis
 - Between-person: Smokers with higher mean NA experience more craving on average
 - Within-person: Comparing each smoker to him- or herself, craving increases when NA is high and decreases when NA is low

Naïve Approach

- If we just estimate a model with NA predicting craving, the association we get is difficult to interpret
- Blends between-person and within-person effects of NA
- Helpful to disaggregate between and within portions of NA variable before modeling

Disaggregating between and within

- First, we estimate the mean of NA for each person (this gives us the BETWEEN variable)
- Second, we subtract the person mean from the raw NA scores for each moment/observation (person-mean centering, gives us the WITHIN variable)
- Third, we use one (or both) in models to discover associations at each level

Disaggregating between and within via person-mean centering

$$NA_{ij} = \overline{NA}_j + \widecheck{NA}_{ij}$$

Negative affect at time *i* for person *j* (NA_{ij}) can be split into 2 parts:

1. The *between* part, the mean for person $j(\overline{NA_j})$ 2. The *within* part, the difference between person j mean and value at time $i(\widetilde{NA_{ij}} = NA_{ij} - \overline{NA_j})$

What each part predicts

- Person-mean NA (\overline{NA}_j) varies *only at the between-person level*, can only predict between-person differences in mean craving.
- Person-mean centered NA (\widetilde{NA}_{ij}) varies *only at the withinperson level*, predicts only within-person fluctuations in craving
 - This is because by subtracting person means, each person's mean is set to the same value: 0. Thus, it contains <u>no</u> between-person variance.

Calculating person-mean NA (\overline{NA}_j) in SAS

```
*MAKE PERSON-MEAN NEGATIVE AFFECT;

proc means data=ilddataset nway noprint;

class id;

var NegAffectC;

output out=means2 mean=mNegAffectC;

run;
```

```
*MERGE PERSON-MEAN AND RAW DATA;
data ilddataset;
merge ilddataset means2;
by id;
drop _type_ _freq_;
label mNegAffectC="negative affect, person-mean for between effect";
run;
```


Create person-mean centered NA in SAS $(\widetilde{NA}_{ij} = NA_{ij} - \overline{NA}_j)$

*CREATE PERSON-MEAN CENTERED NA FOR WITHIN EFFECT; data ilddataset; set ilddataset means2; dNegAffectC = NegAffectC - mNegAffectC; label dNegAffectC="negative affect, person-mean centered for within effect"; run;

Means and Correlations

	Simple Statistics									
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum	Label			
NegAffectC	30432	0.0007341	0.64825	22.34032	-0.52746	5.47254	Negative Affect, Grand Mean Centered			
mNegAffectC	35000	0.00234	0.37188	82.05728	-0.52746	1.43087	negative affect, person-mean for between effect			
dNegAffectC	30432	0	0.53228	0	-1.73333	5.41935	negative affect, person-mean centered for within effect			

Pearson Correlation Coefficients Prob > r under H0: Rho=0 Number of Observations						
	NegAffectC	mNegAffectC	dNegAffectC			
NegAffectC Negative Affect, Grand Mean Centered	1.00000 30432	0.57078 <.0001 30432	0.82110 <.0001 30432			
mNegAffectC negative affect, person-mean for between effect	0.57078 <.0001 30432	1.00000 35000	0.00000 1.0000 30432			
dNegAffectC negative affect, person-mean centered for within effect	0.82110 <.0001 30432	0.00000 1.0000 30432	1.00000 30432			

Within-Person MLM for Negative Affect and Craving

LEVEL 1: CRAV_{*ij*} = β_{0j} + β_{1j} (**dNA**_{*ij*}) + e_{ij}

LEVEL 2: $\beta_{0j} = \gamma_{00} + u_{0j}$ $\beta_{1j} = \gamma_{10}$

dNA_{ij} is negative affect, person-mean centered. Association gives within-person effect, contains only within-person variation.

Given centering, intercept is predicted craving at grand mean negative affect

Mixed Model for Negative Affect and Craving

 $\mathbf{CRAV}_{ij} = \gamma_{00} + \gamma_{10}(\mathbf{dNA}_{ij}) + u_{0j} + e_{ij}$

 γ_{00} : fixed intercept γ_{10} : within-person negative affect slope u_{0j} : random intercept e_{ii} : residual

SAS Syntax

title "within association between NA and craving";
proc mixed data=ILDDataset method=ml covtest;
class id;
model Craving= dNegAffect /s ddfm=bw;
random intercept /subject=id type=un g gcorr;
repeated /sub=id type=sp(pow)(studymins);
run; title;

Selected Output

Fixed Effects:

Moments with higher negative affect are associated with higher craving than moments with lower negative affect

Solution for Fixed Effects								
Effect Estimate Standard DF t Value Pr >								
Intercept	5.0173	0.08144	999	61.60	<.0001			
dNegAffectC	1.2492	0.02017	29E3	61.92	<.0001			

Random Effects

Covariance Parameter Estimates									
Cov Parm Subject Estimate Standard Z Value									
UN(1,1)	id	6.5104	0.2966	21.95	<.0001				
SP(POW)	id	0.9699	0.001781	544.54	<.0001				
Residual		3.4984	0.02916	119.96	<.0001				

Association differs from person to person?

- Within-person NA→craving association may be stronger for some versus others
 - For some, craving may be more strongly driven by bad mood
 - For others, less so

• We can account for differences via random slopes

Within-Person MLM for Negative Affect and Craving, with Random Slope

LEVEL 1: CRAV_{*ij*} = β_{0j} + β_{1j} (**dNA**_{*ij*}) + e_{ij}

LEVEL 2: $\beta_{0j} = \gamma_{00} + u_{0j}$ $\beta_{1j} = \gamma_{10} + u_{1j}$

Here we add a heterogeneity term (u_{1j}) to suggest that the dNA slope differs from person to person.

Mixed Model for Negative Affect and Craving, with Random Slope

 $\mathbf{CRAV}_{ij} = \gamma_{00} + \gamma_{10}(\mathbf{dNA}_{ij}) + u_{0j} + u_{1j}(\mathbf{dNA}_{ij}) + e_{ij}$

 γ_{00} : fixed intercept γ_{10} : within-person negative affect slope u_{0j} : random intercept u_{1j} : random within-person NA slope e_{ij} : residual

Setting this up in SAS

title "within association between NA and craving, with random slope";
proc mixed data=ILDDataset method=ml covtest;
class id;
model Craving= dNegAffectC /s ddfm=bw;
random intercept dNegAffectC /sub=id type=un g gcorr;
repeated /sub=id type=sp(pow)(studymins);
run; title;

Selected Output

Fixed Effects

Solution for Fixed Effects								
Effect Estimate Standard DF t Value Pr > t								
Intercept	5.0162	0.08147	999	61.57	<.0001			
dNegAffectC	1.3203	0.02899	29E3	45.54	<.0001			

Random Effects

Estimated G Matrix								
Row	Effect	id	Col1	Col2				
1	Intercept	1	6.5180	-0.1717				
2	dNegAffectC	1	-0.1717	0.3279				

Covariance Parameter Estimates									
Cov Parm Subject Estimate Standard Z Value									
UN(1,1)	id	6.5180	0.2968	21.96	<.0001				
UN(2,1)	id	-0.1717	0.07478	-2.30	0.0217				
UN(2,2)	id	0.3279	0.03641	9.01	<.0001				
SP(POW)	id	0.9685	0.002030	477.16	<.0001				
Residual		3.4027	0.02883	118.01	<.0001				

Estimating Between- and Within-Person Effects in the Same Model

LEVEL 1: CRAV_{*ij*} = $\beta_{0j} + \beta_{1j}(\mathbf{dNA}_{ij}) + e_{ij}$

LEVEL 2: $\beta_{0j} = \gamma_{00} + \gamma_{01} (\mathbf{mNA}_j) + u_{0j}$ $\beta_{1j} = \gamma_{10} + u_{1j}$

The dNA slope asks whether the same person experiences an increase in craving when NA is high

The mNA effect asks whether people with higher average NA also have higher average craving

Mixed model for Between and Within NA on Craving

 $\begin{aligned} \mathbf{CRAV}_{ij} &= \gamma_{00} + \gamma_{01} (\mathbf{mNA}_j) \\ &+ \gamma_{10} (\mathbf{dNA}_{ij}) \\ &+ u_{0j} + u_{1j} (\mathbf{dNA}_{ij}) + e_{ij} \end{aligned}$

 γ_{00} : fixed intercept γ_{01} : between-person NA effect on intercept γ_{10} : within-person NA slope u_{0j} : random intercept u_{1j} : random within-person NA slope e_{ij} : residual

SAS Syntax

title "between & within association between NA and craving, with random slope";
proc mixed data=ILDDataset method=ml covtest;
class id;
model Craving= mNegAffectC dNegAffectC /s ddfm=bw;
random intercept dNegAffectC /subject=id type=un g gcorr;
repeated /sub=id type=sp(pow)(studymins);

run; title;

Selected Output

Fixed Effects

Solution for Fixed Effects									
Effect Estimate Standard DF t Value Pr									
Intercept	5.0116	0.07808	998	64.19	<.0001				
mNegAffectC	1.9503	0.2097	998	9.30	<.0001				
dNegAffectC	1.3149	0.02909	29E3	45.20	<.0001				

Random Effects

Covariance Parameter Estimates									
Cov Parm Subject Estimate Standard Z Value F									
UN(1,1)	id	5.9770	0.2726	21.92	<.0001				
UN(2,1)	id	-0.1135	0.07122	-1.59	0.1109				
UN(2,2)	id	0.3325	0.03649	9.11	<.0001				
SP(POW)	id	0.9685	0.002034	476.25	<.0001				
Residual		3.4020	0.02882	118.05	<.0001				

Interpreting the fixed effects output

Solution for Fixed Effects									
Effect	DF	t Value	Pr > t						
Intercept	5.0116	0.07808	998	64.19	<.0001				
mNegAffectC	1.9503	0.2097	998	9.30	<.0001				
dNegAffectC	1.3149	0.02909	29E3	45.20	<.0001				

Between (mNegAffect): People with higher mean NA experience higher mean craving in daily life compared to people with lower mean NA.

Within (dNegAffect): Compared to themselves, people experience increased craving during high NA versus low NA moments.

Remember, relationship is contemporaneous

- We can get the same story using craving as a predictor of negative affect
- Reminds us that these associations are correlational
- And don't establish which predicts which

Selected Output from Craving as a Predictor of NA

Solution for Fixed Effects									
Effect	Estimate	Standard Error	DF	t Value	Pr > t				
Intercept	1.5278	0.01135	998	134.65	<.0001				
mCravingC	0.03824	0.003854	998	9.92	<.0001				
dCravingC	0.08676	0.002503	29E3	34.66	<.0001				

- Same conclusions:
 - Higher mean craving is associated with higher mean NA (between-person)
 - Moments of increased craving are associated with increased NA (within-person)

Directionality via Temporal Lags

- To find out if NA is a predictor of craving, we can use NA from the previous observation to predict craving at the current observation
- We "lag" the variable in the dataset to achieve this

Syntax for Creating lags

proc sort data=ilddataset; by id date hour minute; run;

```
data ilddataset; set ilddataset;
by id date;
dNegAffectC_lag1=lag(dNegAffectC); /*Lag NA*/
CravingC_lag1=lag(CravingC); /*Lag Craving (Control Var)*/
if first.id | first.date then do; /*Sets overnight lags and lags across people to
missing*/
dNegAffectC_lag1=.;
CravingC_lag1=.;
label dNegAffectC_lag1="dNegAffect, lagged 1 obs"
CravingC_lag1="Craving, lagged 1 obs";
run;
```


Obs	id	date	HourWithinDay	MinuteWithinHour	dNegAffectC	dNegAffectC_lag1
1	1	20164	10	1	-	
2	1	20164	11	25	-0.53571	
3	1	20164	15	4	0.46429	-0.53571
4	1	20164	16	58	0.46429	0.46429
5	1	20164	20	25	0.46429	0.46429
6	1	20165	9	1	0.46429	
7	1	20165	11	25	0.46429	0.46429
8	1	20165	14	4	0.46429	0.46429
9	1	20165	16	58	0.46429	0.46429
10	1	20165	19	25	-	0.46429
11	1	20166	9	1	-0.53571	
12	1	20166	12	25	-0.53571	-0.53571
13	1	20166	15	4	0.46429	-0.53571
14	1	20166	17	58	-	0.46429
15	1	20166	19	25	0.46429	
16	1	20167	9	1	0.46429	
17	1	20167	11	25	0.46429	0.46429
18	1	20167	15	4	-	0.46429
19	1	20167	16	58	0.46429	
20	1	20167	20	25	0.46429	0.46429
21	1	20168	9	1	-0.53571	-
22	1	20168	11	25	-0.53571	-0.53571
23	1	20168	14	4	-0.53571	-0.53571
24	1	20168	17	58	-	-0.53571
25	1	20168	20	25	-	

SAS Syntax for Lagged Model

```
title "lagged model, lagged NA predicting current craving";
proc mixed data=ILDDataset method=ml covtest;
class id;
model Craving= CravingC_lag1 dNegAffectC_lag1 /s ddfm=bw;
random intercept dNegAffectC_lag1 /subject=id type=un g gcorr;
repeated /sub=id type=sp(pow)(studymins);
run; title;
```

We control for lagged craving (grand mean centered) to remove craving influence on itself

We test the within-person effect of lagged NA

We could include person-mean NA for between effect ... but we don't here to keep model simple

Selected Output

Solution for Fixed Effects								
Effect	Estimate	Standard Error	DF	t Value	Pr > t			
Intercept	4.6859	0.07739	999	60.55	<.0001			
CravingC_lag1	0.07451	0.006982	21E3	10.67	<.0001			
dNegAffectC_lag1	0.2303	0.02568	21E3	8.97	<.0001			

Significant lagged effect, NA predicts craving at momentary level. Lagged effect does not differ significantly between people (random slope is not significant)

Covariance Parameter Estimates								
Cov Parm	Subject	Estimate	Standard Error	Z Value	Pr Z			
UN(1,1)	id	5.8168	0.2848	20.43	<.0001			
UN(2,1)	id	0.08533	0.05859	1.46	0.1453			
UN(2,2)	id	0.01760	0.01921	0.92	0.1798			
SP(POW)	id	0.7421	0.5324	1.39	0.1633			
Residual		3.5612	0.03578	99.52	<.0001			

Within-Person Process by Between-Person Characteristics

Testing Between-Person Differences in Within-Person Effects

- We know the within-person association between NA and craving is stronger for some versus others
- Can we predict who these people are?
- We hypothesize that the coupling between NA and craving may differ by level of nicotine dependence

MLM testing Dependence Effects on NA-Craving Slope

LEVEL 1: CRAV_{*ij*} = β_{0j} + β_{1j} (**dNA**_{*ij*}) + e_{ij}

LEVEL 2: $\beta_{0j} = \gamma_{00} + \gamma_{01} (\mathbf{DEP}_j) + u_{0j}$ $\beta_{1j} = \gamma_{10} + \gamma_{11} (\mathbf{DEP}_j) + u_{1j}$

Mixed Model: Dependence Effects on NA-Craving Slope

 $\begin{aligned} \mathbf{CRAV}_{ij} &= \gamma_{00} + \gamma_{01} (\mathbf{DEP}_j) \\ &+ \gamma_{10} (\mathbf{dNA}_{ij}) + \gamma_{11} (\mathbf{DEP}_j \times \mathbf{dNA}_{ij}) \\ &+ u_{0j} + u_{1j} (\mathbf{dNA}_{ij}) + e_{ij} \end{aligned}$

 γ_{00} : fixed intercept

 γ_{01} : Dependence effect on intercept

 γ_{10} : within-person NA slope

 γ_{11} : Dependence effect on NA slope (cross-level interaction)

 u_{0j} : random intercept

 u_{1i} : random within-person NA slope

 e_{ij} : residual

SAS Syntax

Estimating Simple Slopes

 $\mathbf{CRAV}_{ij} = \gamma_{00} + \gamma_{01}(\mathbf{DEP}_j) + \gamma_{10}(\mathbf{dNA}_{ij}) + \gamma_{11}(\mathbf{DEP}_j \times \mathbf{dNA}_{ij})$

Simple Slope: $\gamma_{10}(\mathbf{dNA_{ij}}) + \gamma_{11}(\mathbf{DEP}_j \mathbf{x} \mathbf{dNA_{ij}})$

 $= \gamma_{10} + \gamma_{11} (\mathbf{DEP}_j)$

Generating simple slopes: $\gamma_{10} + \gamma_{11}(DEP_j)$

• What is the dNA effect for Low Dependence? Simple Slope: $\gamma_{10} + \gamma_{11}(\mathbf{0})$

estimate "NA effect, low dep" dNegAffectC 1 dNegAffectC*ftnd0 0;

• What is the dNA effect for High Dependence? Simple Slope: $\gamma_{10} + \gamma_{11}(\mathbf{1})$

estimate "NA effect, high dep" dNegAffectC1 dNegAffectC*ftnd01;

OUTPUT: Fixed Effects and Simple Slopes

Solution for Fixed Effects											
Effect	Estimate	Standard Error	DF	t Value	Pr > t						
Intercept	4.5917	0.07483	998	61.36	<.0001						
dNegAffectC	1.3722	0.03020	29E3	45.43	<.0001						
ftnd0	4.2028	0.2355	998	17.85	<.0001						
dNegAffectC*ftnd0	-0.5316	0.08960	29E3	-5.93	<.0001						

Estimates										
Label	Estimate	Standard Error	DF	t Value	Pr > t	Alpha	Lower	Upper		
NA association, low dep	1.3722	0.03020	29E3	45.43	<.0001	0.05	1.3130	1.4314		
NA association, high dep	0.8406	0.08436	29E3	9.96	<.0001	0.05	0.6752	1.0059		

ate

RAISE DATA EXAMPLES

Personality and the Momentary Stress Process

- We are interested in understanding the momentary stress process for adolescents, and the role of personality in shaping this process
- Transactional models (i.e., Bolger & Zuckerman, 1995) hypothesize that personality affects this process in 2 ways:
 - By "selecting" the environments/experiences we have
 - By influencing our reactions to these environments/experiences

Neuroticism and the Adolescent Stress Process

- We decide to test the momentary process linking daily stressors (or hassles) and negative affect, and how this process differs based on adolescents' neuroticism
- We hypothesize that adolescents high in neuroticism will
 - 1. Report a higher likelihood of experiencing hassles on any given moment (*greater exposure*)
 - 2. Experience greater increases in negative affect when hassles are experienced (*greater reactivity*)

Conceptual Model

Variables

Neuroticism

- -Person-level (level 2), measured once at baseline-Interviewer reports (two interviewers, averaged)-Does the adolescent seem...
 - 1) Anxious, easily upset?
 - 2) Calm, emotionally stable? (reverse coded)

Variables

Hassles

-Moment-level (level 1), measured twice a day

-Adolescent report via EMA

-Asked to report whether a number of stressful events occurred "since the morning" (if afternoon), or "since the afternoon" (if evening)

-Dichotomized into 1=one or more hassles occurred, 0=no hassles

Variables

Negative Affect

-Moment-level (level 1), measured three times a day

-Adolescent report via EMA

-Asked to rate on a sliding scale (0-100) how they felt "right now" across 7 negative emotion adjectives (e.g., mad, nervous, sad, lonely, worried)

-Mean was taken at each observation

Descriptive Statistics

The MEANS Procedure

Variable	Label	N	Mean	Std Dev	Minimum	Maximum
neuroAB anyhasb	mean of neuroticism across raters any hassles occurred	9780 6636	1.8614264 0.2814949	0.5754736 0.4497622	1.0000000	4.5000000 1.0000000
negaff	momentary negative affect	9798	16.9213265	16.3341162	0	99.0000000

Conceptual Model

Modeling binary outcomes

- In our example, hassles experienced at any moment is a binary outcome (did versus did not experience)
- We use logistic multilevel modeling to test this association
- In SAS, we trade in PROC MIXED for PROC GLIMMIX, which does logistic regression in a multilevel framework

MLM for Neuroticism Effect on Hassles

LEVEL 1: Log Odds(HAS_{*ij*}) = β_{0j}

LEVEL 2: $\beta_{0j} = \gamma_{00} + \gamma_{01}(\text{NEUR}_j) + u_{0j}$

Neuroticism is mean centered

 γ_{00} is the intercept, the predicted log odds of hassles for adolescents with average levels of Neuroticism (=0)

 γ_{01} is the Neuroticism association, the increase in log odds of hassles on any given day for each 1-unit increase in Neuroticism

Mixed Model for Neuroticism Effect

Multilevel Equation: LEVEL 1: LogOdds(HAS)_{*ij*} = β_{0j}

LEVEL 2:
$$\beta_{0j} = \gamma_{00} + \gamma_{01}(\text{NEUR}_j) + u_{0j}$$

Mixed Equation: LogOdds(CRAV)_{*ij*} = $\gamma_{00} + \gamma_{01}(\text{NEUR}_j) + u_{0j}$

 γ_{00} : fixed intercept γ_{01} : Dependence effect on intercept u_{0j} : random intercept

$LogOdds(CRAV_{ij}) = \gamma_{00} + \gamma_{01}(NEUR_j) + u_{0j}$

- Note that there is no level 1 residual term
- This is because with a binary outcome, if we know the mean [p], we know the variance [p*(1-p)]
- For complicated reasons, the model-estimated variance of a binary variable *can be* larger or smaller than p*(1-p)
 - This is called over- and underdispersion, respectively
- We can model this dispersion, along with residual autocorrelation, in PROC GLIMMIX

PROC GLIMMIX Syntax

proc glimmix data=emahome method=mspl noitprint noclprint; class raiseid studyminsc; model anyhasb= neuroAB_C /link=logit dist=binomial s cl ddfm=bw; random intercept /sub=raiseid type=un g gcorr; random studyminsc /sub=raiseid type=sp(pow)(studyminsc) residual; covtest /wald cl; *gives Z-tests for random effects; nloptions tech=nrridg; *optimization technique that helps convergence; estimate "odds for mean neuro" intercept 1 /exp cl; estimate "OR for neuroticism --> hassles" neuroAB_C1 /exp cl; run;

Selected Output

Solutions for Fixed Effects										
Effect Estimate Standard DF t Value Pr > t Alpha Lower Up										
Intercept	-1.2406	0.09921	285	-12.50	<.0001	0.05	-1.4359	-1.0453		
neuroAB_C	0.1950	0.1691	285	1.15	0.2496	0.05	-0.1377	0.5278		

Covariance Parameter Estimates										
Cov Parm	Subject	Estimate	Standard Error	Z Value	Pr Z	Wald 95% Confidence Bounds				
UN(1,1)	raiseid	2.4092	0.2526	9.54	<.0001	1.9817	2.9925			
SP(POW)	raiseid	0.7551	0.03781	19.97	<.0001	0.6810	0.8292			
Residual		0.8312	0.01494	55.63	<.0001	0.8026	0.8612			

Estimates											
Label	Estimate	Standard Error	DF	t Value	Pr > t	Alpha	Lower	Upper	Exponentiated Estimate	Exponentiated Lower	Exponentiated Upper
odds for mean neuro	-1.2406	0.09921	285	-12.50	<.0001	0.05	-1.4359	-1.0453	> 0.2892	0.2379	0.3516
OR for neuroticism> hassles	0.1950	0.1691	285	1.15	0.2496	0.05	-0.1377	0.5278	1.2154	0.8713	1.6953

For adolescents with average neuroticism, the odds of experiencing a hassle on any given day are 29% (OR: 0.29; 95% CI: 0.24, 0.35).

With each unit increase in neuroticism, the odds of experiencing a hassle on any given day increase by 22% (OR: 1.22, CI: 0.87, 1.70)

Conceptual Model

An Alternate Approach to Isolating Within-Person Associations

- Our predictor, hassle occurrence, is binary
- We could center around the person mean, but this would create funny scaling
 - For example, if an adolescent experiences hassles 25% of the time, their predictor values would be
 - 1-.25 = .75
 - 0-.21 = -.25
- Alternatively, we could simply include person mean hassles *as a covariate*
 - This will statistically remove between-person variation, allowing estimation of the within-person effect
 - Additionally, this approach keeps the predictor in the original scale

Person-Mean Hassles

- Because hassles is a binary variable, taking the mean will give a proportion for each person (ranging from 0 to 1)
- Its associated effect will therefore be comparing adolescents who *never* experienced hassles (=0) to those who *always* experienced hassles (=1)
- To get around this, I rescale by multiplying this proportion by 100 turning it into a percentage
- The effect is now what happens to mean negative affect with each percent point increase in hassle frequency

Hassles predicting Negative Affect

LEVEL 1:
$$\mathbf{NA}_{ij} = \beta_{0j} + \beta_{1j}(\mathbf{HAS}_{ij}) + e_{ij}$$

LEVEL 2:
$$\beta_{0j} = \gamma_{00} + \gamma_{01} (\mathbf{mHAS}_j) + u_{0j}$$

 $\beta_{1j} = \gamma_{10} + u_{1j}$

mHAS_j is each adolescent's mean level of hassle exposure, captured as the percent of moments hassles were experienced. It is mean centered.

 HAS_{ij} is the raw, time-varying hassles indicator (0, 1). With mean hassles in the model, the effect of HAS_{ij} is a within-person effect.

Mixed model for Hassles and Negative Affect

 $\mathbf{NA}_{ij} = \gamma_{00} + \gamma_{01} (\mathbf{mHAS}_j) + \gamma_{10} (\mathbf{HAS}_{ij})$ $+ u_{0j} + u_{1j} (\mathbf{HAS}_{ij}) + e_{ij}$

- γ_{00} : fixed intercept
- γ_{01} : between-person hassles effect on intercept, controlling for today's hassles
- γ_{10} : within-person hassles slope
- u_{0i} : random intercept
- u_{1i} : random within-person hassles slope
- e_{ij} : residual

SAS syntax

title "momentary association between hassles and NA"; proc mixed data=emahome method=ml covtest noclprint noitprint; class raiseid studyminsc; model negaff=manyhasbpc anyhasb /s cl ddfm=bw; random intercept anyhasb /subject=raiseid type=un g gcorr; repeated studyminsc /sub=raiseid type=sp(pow)(studyminsc); run; title;

Selected Output

Solution for Fixed Effects										
Effect	Estimate	Standard Error	DF	t Value	Pr > t	Alpha	Lower	Upper		
Intercept	16.1062	0.6212	288	25.93	<.0001	0.05	14.8836	17.3289		
manyhasbpc	0.2019	0.02361	288	8.55	<.0001	0.05	0.1555	0.2484		
anyhasb	4.5162	0.5844	6330	7.73	<.0001	0.05	3.3707	5.6618		

	Covariance Parameter Estimates										
Cov Parm	Subject	Estimate	Standard Error	Z Value	Pr Z						
UN(1,1)	raiseid	100.05	9.3533	10.70	<.0001						
UN(2,1)	raiseid	-7.2275	5.8525	-1.23	0.2169						
UN(2,2)	raiseid	43.1640	7.7863	5.54	<.0001						
SP(POW)	raiseid	0.7877	0.03096	25.45	<.0001						
Residual		123.00	2.2475	54.72	<.0001						

Conceptual Model

Neuroticism and Hassles Multilevel Model

LEVEL 1: $\mathbf{NA}_{ij} = \beta_{0j} + \beta_{1j}(\mathrm{HAS}_{ij}) + e_{ij}$

LEVEL 2: $\beta_{0j} = \gamma_{00} + \gamma_{01}(\text{NEUR}_j) + \gamma_{02}(\text{mHAS}_j) + u_{0j}$ $\beta_{1j} = \gamma_{10} + \gamma_{11}(\text{NEUR}_j) + u_{1j}$

Neuroticism and Hassles Mixed Model

$$\begin{split} \mathbf{NA}_{ij} &= \gamma_{00} + \gamma_{01} (\mathrm{NEUR}_j) \gamma_{02} (\mathrm{mHAS}_j) \\ &+ \gamma_{10} (\mathrm{HAS}_{ij}) + \gamma_{11} (\mathrm{NEUR}_j \times \mathrm{HAS}_{ij}) \\ &+ u_{0j} + u_{1j} (\mathrm{HAS}_{ij}) + e_{ij} \end{split}$$

 γ_{00} : fixed intercept

 γ_{01} : between-person effect of neuroticism on intercept

- γ_{02} : between-person hassles effect on intercept, controlling for today's hassles
- γ_{10} : within-person hassles slope
- γ_{11} : between-person effect of neuroticism on hassles slope
- u_{0j} : random intercept
- u_{1i} : random within-person hassles slope

 e_{ij} : residual

Model for Neuro x Hassles

title "Neuroticism x hassles predicting NA";

proc mixed data=emahome method=ml covtest noclprint noitprint;

class raiseid studyminsc;

model negaff=manyhasbpc neuroAB_C anyhasb neuroAB_C*anyhasb /s cl
ddfm=bw;

random intercept anyhasb / subject=raiseid type=un g gcorr;

repeated studyminsc / sub=raiseid type=sp(pow)(studyminsc);

*simple slopes;

estimate "hassles-->NA slope, low Neuroticism" anyhasb 1 neuroAB_C*anyhasb -0.6; estimate "hassles-->NA slope, high Neuroticism" anyhasb 1 neuroAB_C*anyhasb 0.6; run; title;

Estimating simple slopes

 $\mathbf{NA}_{ij} = \gamma_{00} + \gamma_{01} (\mathbf{NEUR}_j) \gamma_{02} (\mathbf{mHAS}_j)$ $+ \gamma_{10} (\mathbf{HAS}_{ij}) + \gamma_{11} (\mathbf{NEUR}_j \times \mathbf{HAS}_{ij})$

Simple Slope: $\gamma_{10}(HAS_{ij}) + \gamma_{11}(NEUR_j \times HAS_{ij})$

 $= \gamma_{10} + \gamma_{11} (\text{NEUR}_j)$

Generating simple slopes: $\gamma_{10} + \gamma_{11}(NEUR_j)$

- What is the within hassles effect for Low Neuroticism?
 - Hold Neur at 1 SD below the Mean (=-0.6)

```
Simple Slope: \gamma_{10} + \gamma_{11}(-0.6)
```

estimate "Hassles Slope, Low Neur" anyhasb 1 neuroAB_C*anyhasb -0.6;

- What is the within hassles effect for High Neuroticism?
 - Hold Neur at 1 SD below the Mean (=0.6)

```
Simple Slope: \gamma_{10} + \gamma_{11}(0.6)
```

estimate "Hassles Slope, Low Neur" anyhasb 1 neuroAB_C*anyhasb 0.6;

OUTPUT: Fixed Effects and Simple Slopes

Solution for Fixed Effects									
Effect	Estimate	Standard Error	DF	t Value	Pr > t	Alpha	Lower	Upper	
Intercept	16.1903	0.6253	284	25.89	<.0001	0.05	14.9596	17.4210	
manyhasbpc	0.2014	0.02372	284	8.49	<.0001	0.05	0.1547	0.2481	
neuroAB_C	0.1867	1.0515	284	0.18	0.8592	0.05	-1.8829	2.2564	
anyhasb	4.4024	0.5846	6277	7.53	<.0001	0.05	3.2563	5.5484	
neuroAB_C*anyhasb	-0.4269	1.0254	6277	-0.42	0.6772	0.05	-2.4369	1.5832	

Estimates									
Label Standard Estimate Standard DF t Value P									
hassles>NA slope, low Neuroticism	4.6585	0.8546	6277	5.45	<.0001				
hassles>NA slope, high Neuroticism	4.1463	0.8427	6277	4.92	<.0001				

Negative Affect by Hassles, BY Neuroticism

EXTRA SLIDES

Brief Intro to SAS Programming

Brief introduction to SAS's setup

- Three important windows
 - Editor
 - Window where you write your programs
 - Log
 - Window where you are informed of what SAS is doing when it runs your program
 - Window where you check for errors in your program
 - Output
 - Window where you see the output (results) from your program

Program management and organization

- For the "editor," "log," and "output" windows
 - Save as you normally would in a Windows-based program
 - File Save As...
 - Print as you normally would in a Windows-based program
 - File Print
 - May also "copy" and "paste" from these windows into Word documents
- File extension for SAS programs is ".sas"

Data management and organization

- SAS uses "libraries" to organize and save data
 - Default library is "work"
 - Does not save datasets permanently, only a "working" directory with "working" datasets in the current SAS session
 - When you close SAS, datasets in "work" are lost
 - You may make a library that points to a location on your computer (or external drive, etc.) where you have datasets saved (or want to have datasets saved)
 - Datasets may be "read from" and "written to" that library, which will open the dataset from, or save the dataset to, the specified location on your computer
- File extension for SAS datasets is ".sas7bdat"

Data management and organization

- May view actual dataset within SAS
 - In "explorer" window:
 - Double-click "libraries"
 - Double-click the library you want to view
 - Double-click the dataset you want to view
- Missing data has a special code
 - 11 11

Writing and running a program

Comments

- *write comment here;
- /*write comment here*/
- Run
 - Highlight, click on the little "running man" icon on the tool bar located across the top of the SAS window
 - Or, Highlight and press F3

PROC CONTENTS

Produces a list of all variables in specified dataset

PROC CONTENTS DATA = EXAMPLE; RUN;

- PROC FREQ
 - Produces frequency tables for specified variables

PROC FREQ DATA = EXAMPLE;
TABLES GENDER;
RUN;

- PROC UNIVARIATE
 - Produces a variety of descriptive statistics for specified variables
 - NORMAL option produces normal probability plots
 - PLOT option produces stem-and-leaf plots and boxplots

PROC UNIVARIATE DATA = EXAMPLE PLOT; VAVAR GGPA VGRE; RUN;

- PROC MEANS
 - Produces smaller list of descriptive statistics for specified variables

PROC MEANS DATA = EXAMPLE; V VAR IQ CGPA; RUN;

Example of 3-way interaction

A "Big" Predictive Model

- NA seems to be more strongly linked with craving for those with Low versus High Dependence
- But perhaps this pattern differs based on background factors
- Consider childhood adversity. Does dependence matter as much for those with more adverse backgrounds?

Childhood Adversity

• A count of adverse experiences (parental divorce, domestic violence, poverty) experienced in childhood

Adversity x Dependence x NA

- We hypothesize a three-way interaction between Childhood Adversity, Dependence, and Momentary NA in predicting smoking
- We think that Dependence will strengthen the NA-Craving Coupling for those with Low Adversity
- But not so much for those with High Adversity; dependence may matter less

MLM for 3-way interaction

LEVEL 1: $\mathbf{CRAV}_{ij} = \beta_{0j} + \beta_{1j}(\mathbf{dNA}_{ij}) + e_{ij}$ LEVEL 2: $\beta_{0j} = \gamma_{00} + \gamma_{01}(\mathbf{DEP}_j) + \gamma_{02}(\mathbf{ADV}_j)$ $+ \gamma_{03}(\mathbf{DEP}_j \times \mathbf{ADV}_j) + u_{0j}$

> $\beta_{1j} = \gamma_{10} + \gamma_{11} (\mathbf{DEP}_j) + \gamma_{12} (\mathbf{ADV}_j)$ + $\gamma_{13} (\mathbf{DEP}_j \times \mathbf{ADV}_j) + u_{1j}$

Mixed Equation for 3-way interaction

Intercept

 $\begin{aligned} \mathbf{CRAV}_{ij} &= \gamma_{00} + \gamma_{01}(\mathbf{DEP}_{j}) + \gamma_{02}(\mathbf{ADV}_{j}) + \gamma_{03}(\mathbf{DEP}_{j} \times \mathbf{ADV}_{j}) \\ & \text{dNA Slope} \end{aligned}$ $&+ \gamma_{10}(\mathbf{dNA}_{ij}) + \gamma_{11}(\mathbf{DEP}_{j} \times \mathbf{dNA}_{ij}) + \gamma_{12}(\mathbf{ADV}_{j} \times \mathbf{dNA}_{ij}) \\ &+ \gamma_{13}(\mathbf{DEP}_{j} \times \mathbf{ADV}_{j} \times \mathbf{dNA}_{ij}) \\ & \text{Random Effects} \\ &+ u_{0j} + u_{1j}(\mathbf{dNA}_{ij}) + e_{ij} \end{aligned}$

SAS Syntax

Selected Output

Solution for Fixed Effects							
Effect	Estimate	Standard Error	DF	t Value	Pr > t		
Intercept	3.3828	0.08301	996	40.75	<.0001		
ftnd0	4.0966	0.5028	996	8.15	<.0001		
ChAdv	0.8914	0.04109	996	21.69	<.0001		
ftnd0*ChAdv	-0.6001	0.1100	996	-5.46	<.0001		
dNegAffectC	1.2536	0.04001	29E3	31.33	<.0001		
ftnd0*dNegAffectC	0.3983	0.2351	29E3	1.69	0.0902		
ChAdv*dNegAffectC	0.08961	0.01942	29E3	4.62	<.0001		
ftnd0*ChAdv*dNegAffe	-0.2697	0.05164	29E3	-5.22	<.0001		

Covariance Parameter Estimates							
Cov Parm	Subject	Estimate	Standard Error	Z Value	Pr Z		
UN(1,1)	id	3.2858	0.1523	21.58	<.0001		
UN(2,1)	id	-0.1169	0.05155	-2.27	0.0233		
UN(2,2)	id	0.2763	0.03346	8.26	<.0001		
SP(POW)	id	0.9682	0.002093	462.49	<.0001		
Residual		3.4013	0.02880	118.10	<.0001		

Unpacking the 3-Way Interaction

- We want to know what the Dependence x NA interaction looks like for low versus high adversity
- We pick two values in the adversity scale
 - Low Adversity: 0 Adverse events
 - High Adversity: 4 adverse events
- And generate model predictions based on these

Select terms for DEP x dNA

$$\begin{aligned} \mathbf{CRAV}_{ij} &= \gamma_{00} + \gamma_{01}(\mathbf{DEP}_{j}) + \gamma_{02}(\mathbf{ADV}_{j}) + \gamma_{03}(\mathbf{DEP}_{j} \times \mathbf{ADV}_{j}) \\ &+ \gamma_{10}(\mathbf{dNA}_{ij}) + \gamma_{11}(\mathbf{DEP}_{j} \times \mathbf{dNA}_{ij}) + \gamma_{12}(\mathbf{ADV}_{j} \times \mathbf{dNA}_{ij}) \\ &+ \gamma_{13}(\mathbf{DEP}_{j} \times \mathbf{ADV}_{j} \times \mathbf{dNA}_{ij}) \end{aligned}$$

Simple Interaction: $\gamma_{11}(\mathbf{DEP}_j \times \mathbf{dNA}_{ij}) + \gamma_{13}(\mathbf{DEP}_j \times \mathbf{ADV}_j \times \mathbf{dNA}_{ij})$

 $= \gamma_{11} + \gamma_{13} (\mathbf{ADV}_j)$

Simple Interaction: $\gamma_{11} + \gamma_{13}(ADV_j)$

• What is the Dep x NA interaction for Low Adversity (=0 Adverse Events)?

estimate "Dep x NA, Low Adversity" dNegAffectC*ftnd0 1 dNegAffectC*ChAdv*ftnd0 0;

• And for High Adversity (=4 Adverse Events)?

estimate "Dep x NA, High Adversity" dNegAffectC*ftnd0 1 dNegAffectC*ChAdv*ftnd0 4;

Output

Estimates							
Label	Estimate	Standard Error	DF	t Value	Pr > t	Alpha	
Neg Aff x Dependence, Low Adversity	0.3983	0.2351	29E3	1.69	0.0902	0.05	
Neg Aff x Dependence, High Adversity (4)	-0.6806	0.1045	29E3	-6.52	<.0001	0.05	

Contrary to our hypothesis, Dependence seems to be a significant moderator of the NA-craving coupling for High but not Low Adversity

Let's unpack this further to see what's going on...

Simple dNA slopes

 $\begin{aligned} \mathbf{CRAV}_{ij} &= \gamma_{00} + \gamma_{01}(\mathbf{DEP}_{j}) + \gamma_{02}(\mathbf{ADV}_{j}) + \gamma_{03}(\mathbf{DEP}_{j} \times \mathbf{ADV}_{j}) \\ &+ \gamma_{10}(\mathbf{dNA}_{ij}) + \gamma_{11}(\mathbf{DEP}_{j} \times \mathbf{dNA}_{ij}) + \gamma_{12}(\mathbf{ADV}_{j} \times \mathbf{dNA}_{ij}) \\ &+ \gamma_{13}(\mathbf{DEP}_{j} \times \mathbf{ADV}_{j} \times \mathbf{dNA}_{ij}) \end{aligned}$

Simple Slope: $\gamma_{10}(\mathbf{dNA}_{ij}) + \gamma_{11}(\mathbf{DEP}_j \times \mathbf{dNA}_{ij}) + \gamma_{12}(\mathbf{ADV}_j \times \mathbf{dNA}_{ij}) + \gamma_{13}(\mathbf{DEP}_j \times \mathbf{ADV}_j \times \mathbf{dNA}_{ij})$

 $= \gamma_{10} + \gamma_{11} (\mathbf{DEP}_j) + \gamma_{12} (\mathbf{ADV}_j) + \gamma_{13} (\mathbf{DEP}_j \times \mathbf{ADV}_j)$

Simple Slopes: $\gamma_{10} + \gamma_{11}(\text{DEP}_j) + \gamma_{12}(\text{ADV}_j) + \gamma_{13}(\text{DEP}_j \times \text{ADV}_j)$

estimate "Neg Aff, Low Dependence Low Adversity" dNegAffectC 1 dNegAffectC*ftnd0 0 dNegAffectC*ChAdv 0 dNegAffectC*ChAdv*ftnd0 0;

estimate "Neg Aff, Low Dependence High Adversity" dNegAffectC 1 dNegAffectC*ftnd0 0 dNegAffectC*ChAdv 4 dNegAffectC*ChAdv*ftnd0 0;

estimate "Neg Aff, High Dependence Low Adversity" dNegAffectC 1 dNegAffectC*ftnd0 1 dNegAffectC*ChAdv 0 dNegAffectC*ChAdv*ftnd0 0;

estimate "Neg Aff, High Dependence High Adversity" dNegAffectC 1 dNegAffectC*ftnd0 1 dNegAffectC*ChAdv 4 dNegAffectC*ChAdv*ftnd0 4;

Simple Slopes Output

Estimates							
Label	Estimate	Standard Error	DF	t Value	Pr > t		
Neg Aff, Low Dependence Low Adversity	1.2536	0.04001	29E3	31.33	<.0001		
Neg Aff, Low Dependence High Adversity	1.6121	0.05879	29E3	27.42	<.0001		
Neg Aff, High Dependence Low Adversity	1.6519	0.2316	29E3	7.13	<.0001		
Neg Aff, High Dependence High Adversity	0.9314	0.08634	29E3	10.79	<.0001		

Adversity appears to heighten the link for those with low dependence, but dampen the link for those with high dependence

Craving = Negative Affect X Dependence Level, BY Childhood Adversity

HELPFUL REFERENCES!

