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Psychology as a Cumulative Science

• Goal of science: build cumulative knowledge

– "standing on shoulders of giants"

• Basis for dominant view of logical empiricism

– science is systematic accrual of reproducible knowledge

• But is psychology truly a reproducible and cumulative 
science?



“It is simply a sad fact that in soft 
psychology theories rise and decline, 
come and go, more as a function of 
baffled boredom than anything else; and 
the enterprise shows a disturbing absence 
of that cumulative character that is so 
impressive in disciplines like astronomy, 
molecular biology, and genetics.“

Paul Meehl (1978, p807)
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The Quest for a Reproducible Science

• Traditional individual-sample analysis
– limited to specific sampling frame, measures, period, etc.

• Literature reviews
– obviously important, but risks “box score” problem

• Meta-analysis
– powerful, but reliant on existing summary statistics

• Parallel or "reproducibility" analysis
– separate analysis of raw data from independent samples

• But parallel analysis does not capitalize on joint 
characteristics of data
– critical to examine study-specific moderators of effects



Integrative Data Analysis

• Integrative Data Analysis (IDA)

– the simultaneous analysis of raw data pooled from two or more 
independent samples (Curran & Hussong, 2009)

• Cross-sectional, longitudinal, or some mix

• Simultaneous analysis can 

– strengthen external validity 

– enhance reproducibility

– empirically evaluate novel research hypotheses



Potential Advantages of  IDA

• Efficient use of existing resources

– leverages data that have already been collected

– informs coordination of data collection for ongoing studies 

– important consideration in development of new data collection

• Greater developmental age coverage

– acceleration of time via cohort-sequential data

– increased developmental validity in measurement

– potential to disaggregate age, cohort and period effects
• e.g., kids were 15 years old in 1980, 1990, and 2000



• Increased statistical power

– larger sample sizes

– greater sample heterogeneity & tests of subgroup differences

– higher frequencies of low-base rate behavior

• Greater study integration and replication

– built-in simultaneous study replication

– direct test of study differences and moderators of effects

• Empirically test novel hypotheses in ways not possible in 
any single contributing data set

Potential Advantages of  IDA



• IDA not always possible

– incompatible measurement

– extreme study differences

– insufficient developmental overlap

• Challenging data management

– often massive data sets with large numbers of items

• Complex statistical analysis

– tractable, but many (many) steps and procedures

• But when possible, can be tremendously powerful

Potential Disadvantages of  IDA



1. Explicate theoretical question of interest

– might be replication or novel research hypotheses

2. Identify contributing data sets

3. Develop pool of potential items

– need common items for linking

– all items need not be identical across all studies

4. Fit measurement model to test structure and invariance

5. Estimate optimal scores anchored to a common scale

6. Scores are then available for subsequent analysis

Typical Steps in IDA



• Do not need same measures in all contributing studies

• Can have items that are 
– identical across all studies

– can be manually modified to be identical

– unique within each study

• Need some subset of common items to establish 
commensurate scale for underlying construct

• Two types of common items
1. Identical items: an item that is precisely the same in both 

stem and response

2. Harmonized item: an item that has been manually 
modified to establish a common stem and response

Common Items



Item Harmonization

• altering an item stem or response within a study to make 
it comparable to similar items assessed in other studies 
for pooled analysis



When Harmonization Doesn’t Work

• Sometimes items simply can’t be harmonized



Harmonization Alone is Insufficient

• Even if successful, cannot assume that either common or
harmonized items are equivalent across person or study

• Harmonized values may:

– understate alcohol use in free format, but not in intervals

– introduce variation due to differing item prompts, response 
labels or battery placement

• May introduce artifacts into analysis that really due to 
study differences in stem or response

• Can use psychometric models to formally evaluate these 
study-specific differences



Traditional Psychometric Models

• Traditionally, measurement invariance examined by 
confirmatory factor analysis and item response theory

• Excellent approaches, not always ideal for IDA

– difficulty including mixed scale types

– invariance tests limited to discrete group membership

• Recent analytic development avoids limitations

– moderated nonlinear linear factor analysis (MNLFA) model 
(Bauer & Hussong, 2009)

• Will demonstrate MNLFA to obtain scores using 17 binary 
items assessing depression over time



Motivating Example: Cross Study

• NIDA-funded project combines 3 existing data sets to 
study pathways to substance use

– Michigan Longitudinal Study (MLS; Bob Zucker)

– Adolescent Family Development Project (AFDP; Laurie Chassin)

– Alcohol & Health Behavior Project (AHBP; Ken Sher)

• Brief exemplar goal for today

– create individual- & time-specific scores of depression using 17 
items from pooled sample where no study assessed all items 

– estimated scores can then be used in subsequent modeling



Cross Study Design



Integrated Sample for Model Fitting



Pool of  Available Items

• 33 binary self-report items assessing presence or 
absence of internalizing symptomatology ages 11-35
– some from Brief Symptom Inventory (BSI)

– some from Child Behavior Check List (CBCL)

– some items share content across BSI and CBCL

• Variations in item coverage across studies
– MLS: all items administered

– AFDP: subset of CBCL items administered

– AHBP: all BSI items administered

• Subset of common items in all studies allow for linking 
and unique items within-study increase score precision

• Preliminary EFAs identified 17 items defining depression



EFA Results for 17 Depression Items
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Covariate Effects on Factor



Covariate Effects on Items



DIF Item: Feels Guilty by Age



DIF Item: Worried by Study & Age



Scoring Phase

• Establish final MNLFA model

– some items are invariant over covariates

– some items differentially relate to latent factor as function 
of covariates

– latent factor itself differentially relates to covariates

• Take all parameters from final MNLFA and use to obtain 
optimal scores on depression

– called Empirical Bayes Estimates of underlying latent factor

• Each subject gets person- and time-specific score of 
depression that reflects item responses and covariates

– literally using MNLFA as an incredibly complex calculator



Growth Models Fitted to Scores



Brief  Example #2: Substance Use

• Substance use notoriously difficult to measure

– recall bias, especially for heavy users

– choosing proper time frame

– assessing not just consumption but patterns of use

• Challenges particularly salient in children

– highly episodic

– low base rates

• Poly-substance use vs. substance-specific use

– alcohol can hijack polysubstance use



Building a Polysubstance Use Model

• Pool data from 3 studies spanning ages 11 to 35

• Identify 8 drug & alcohol use items

• Define latent variable model of polysubstance use

• Account for alcohol use sub-factor

• Allow for mixture of discrete response scale types

• Assess impact & DIF as function of covariates

• Obtain individual- and age-specific factor score 
estimates for subsequent analysis



Eight Items from Three Studies



One Factor CFA



Bifactor CFA



Full Bifactor MNLFA



Individual-Specific Scores



Scores Available for Modeling



Future Directions for IDA

• Our current NIDA-funded project uses true experimental 
design to validate harmonization procedures and 
calculation of commensurate measures

• Lab analogue study:

• Monte Carlo computer

simulation study: FAKE



Future Directions for IDA

• Design of bridging studies to link multiple data sets

• Harmonization of discrete diagnostic status measures

– e.g., linking DSM-IIIR to DSM-IV to DSM-V

• Statistical matching to create synthesized cases

– current IDA expands data as "long"

– powerful advantages to expanding data as "wide"

• Develop strategies for designing new data collection 
efforts in anticipation of future IDA

• All of these extensions need novel development, rigorous 
evaluation, and broad training



Thank you!


